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ABSTRACT

The structure of a very strong shock wave propagating
through a deuterium-tritium gas mixture and a pure tritium
gas is studied. The temperature behind the shock wave is
sufficiently high so that thermonuclear reaction probabilities
are large. The wave structure is similar to that of detona-
tions in chemically reacting gases. It is assumed that the
characteristic times for collisions and reactions are such
that the von Neumann-Zeldovich model of detonations is
applicable; i.e., the shock can be treated as a viscous
gas dynamic shock followed by a deflagration wave inside
of which all the reactions occur. The physical and mathe-
matical assumptions involved in the analysis of thermo-
nuclear shock wave structure are examined. The reaction
probabilities for deuterium and tritium fusion reactions
are computed and the appropriate reaction kinetics equations
are developed. The effect of energy losses due to bremsstrah-
lung on the wave structure is considered for a gas that is
optically thin to radiation of all frequencies. The result-
ing set of structure equations are solved numerically for
several physicaily interesting cases. The neutron flux and
power output due to reactions is calculated for a shock wave

propagating in a electromagnetically driven shock tube filled
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with a mixture of deuterium and tritium. A power of

1 kw/cm3 is predicted under specified operating conditions.
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CHAPTER 1

INTRODUCTION AND HISTORICAL SURVEY

A shock wave is a disturbance that propagates with
supersonic speed with respect to the undisturbed gas ahead
of it. It compresses and heats the gas through which it
moves. If the gas is capable of undergoing molecular,
atomic or nuclear reactions, the gas composition may change
across the shock front.

A shock wave in which exothermic reactions take place
is called a detonation (see figure l). A thermonuclear
shock is defined as a detonation in which thermonuclear
reactions occur. If the high temperature created by the
shock wave is maintained, the gas may coatinue to react
until all the fuel is consumed. Radiation is an important
energy transfer mechanism at temperatures for which thermo-
nuclear reaction rates are appreciable. If the gas is opaque
to radiation, a steady state may be established behind the
wave. If the gas loses energy through radiation, lrowever,
no steady state is established behind the wave; the gas
continues to radiate until its temperature is the same as
that of its surroundings.

The variation of temperature, pressure, density, speed

and species concentration with space inside the shock wave

- e e S e R S R e S T T T e e Y

PR




™ - e - 1
2
%
4 Tempurature
Upstream Downstream
unreacted gas fully reacted gas
gas flows into wave J gos flows out of wave
with speed u, with speed u,< y,
) >
X
{
i
FIG. 1 DETONATION WAVE IN A NON-RADIATING GAS
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is called the shock structure. The flow variables change

continuously from one side of the wave to the other. The
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interior of the wave is where wviscous and thermal conduct-

P

ing processes are important and where all the reactions

e

take place. However, for a gas in which radiation energy

loss is negligible the conditions behind the wave are

independent of the detailed transport and reaction processes
occurring in the shock structure. If radiation energy loss
cannot be neglected, the conditions behind the wave depend
l‘ ' on the physical processes occurring in the structure.

I In this paper the structure of detonations in gases
capable of undergoing thermonuclear reactions is investi-
gated. There is no known literature that deals directly
with thermonuclear shock structure. However, studies of

B gas dynamic shocks, detonations in chemically reacting gases,

and shocks in radiating gases are relevant.

k . The early theoretical work on gas dynamic shock waves

‘_ was done by Rankinel and Hugoniot .2 They d« -ived the jump
conditions across the wave and considered the gas dynamic

k‘t' shiock structure equations in an inviscid gas with non-zero

therinal conductivity. 1In general, the gas dynamic shock

structure equations consist of two ccupled non-linear first

order differential equations. If either viscosity or thermal

conductivity is neglected, one of the equations is algebraic.
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Rayleigh3 studied shock structure in a viscid gas with zero
thermal conductivity. The solution of the shock structure
equations in a viscid-thermal conducting gas was obtained
by Gilbarg and Paolucci4 using continuum theory and by
Wang Changs, Mott-SmithG, 2011er7 and Grad8 using the
Boltzmann equation.

9

Detonations were first observed in 1881 by Berthelot.

Chapmanlo and J‘ouguet11 studied detonations theoretically,

postulating that the gas behind the detonation moved relative

to the wave with the speed of sound. Von Neumannlz, D'dring13

and Zeldovich14 analyzed the detonation structure problem
in 1940 assuming that a detonation wave consists of a gas
dynamic shock followed by & deflagration, a wave in which
exothermic reactions take place that propagates with sub-
sonic speed. Under this assumption, the shock structure
equations include one algebraic equation and one first
order non-linear differential equation. Hirschfelder and
Curtissls, assuming that the gas dynamic shock and defla-
gration are coupled, solved two simultaneous non-linear
differential equations for the detonation structure. Deto-
nations have been studied for meny kinds of reacting gas
mixtures. For example, Resler and Caryl6 have studied
detonations in dissociating air and Petchek and Byron17

have investigated ionizing shocks in argon.

3
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Radiative shock wave structure has been studied exten-
sively since 1952 when Prokof'ev18 investigated the case of
steady flow with zero viscosity and thermal conductivity,
i.e., the "radiation smoothed" case. Heaslet and Baldwin19
extended earlier work on the "radiation smoothed" shock by
considering cases with discontinuous profiles. Marshak20
and Traugott21 have included the effects of viscosity and
thermal conductivity in their analyses of radiative shock
structure. Shocks in optically thick atmospheres have been
investigated by K.och22 for a plasma and Scala and Sampson23
for a chemically reacting gas. Shocks in optically thin
atmospheres have been studied by Gr05524 for an ordinary
gas and by Scala and Sampson23 for a gas undergoing chemical
reactions.

In the present paper, the model of detonation structure
that von Neumann used in his study of shocks in chemically
reacting gases, is applied to an analysis of detonations in
gases capable of undergoing thermonuclear reactions. First,
a set of shock structure curves showing the effect of reac-
tions is obtained for detonations in tritium and deuterium-
tritium mixtures. We neglect the effects of viscosity and

thermal conductivity of the gas and radiative energy loss

in this initial treatment. Then, the more complicated

problem of a coupled detonation and radiative shock wave




in tritium and deuterium~tritium mixtures is studied. As
there are no applied magnetic fields in the problem,

bremsstrahlung is the only type of radiation included in
the analysis. The gas is assumed to be optically thin to
radiation of all frequencies. A set of structure curves,
showing the coupled effects of reactions and radiation on

the shock structure, is obtained.
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CHAPTER II

PHYSICAL AND MATHEMATICAL FORMULATION OF THE PROBLEM

In this chapter the problem of detonation wave structure
in gases undergoing thermonuclear reactions will be formu-
lated physically and mathematically. Before writing down
the appropriate shock structure equations for thermonuclear
shocks (first, assuming no radiation losses, and then includ-
ing radiation losses), the von Neumann model of detonation
structure will be described. A discussion of the physical
and mathematical assumptions used to simplify the structure

equations will follow.

2.1 Von Neumann Model of Detonation Structure

The model of detonation structure used by von Neumann
in his study of shocks in chemically reacting gas mixtures,
treats a detonation as a shock followed by a deflagration.
The shock wave, which is thin compared to the deflagration
that follows it, propagates supersonically into the undis-
turbed and unreacted gas; the deflagration, inside of which
all the reactions occur, propagates subsonically into the
gas through which the shock has already travelled.

The chanées in pressure, density, speed, temperature
and ratio of reaction product density to total density (KA )

inside the detonation, viewed in a reference system moving

PRSIETYATE  ~EER e S AR St il
.
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with the detonation, are depicted schematically in figure 2.

Each variable asymptotically approaches its upstreamvalue as x
goes to =~ o° and its downstream value as x goes to + @O ,
In the shock wave (points 1 to 2 in figure 2), the gas is
compressed, decelerated and heated. In the deflagration
(points 2 to 3 in figure 2), the gas, as the reactions
proceed, is gradually expanded and accelerated. The tempera-
ture, which reaches almost its final value behind the shock,
rises to a maximum inside the deflagration and then decreases
slightly as the fuel gets used up and the random thermal
energy is transferred into bulk kinetic energy of the gas.

The von Neumann model is a valid description of a
detonation provided thatf. the characteristic time for reac-
tions to take place,'tR, is long compared to the time involved
in passage of the shock wave (Hirschfelder,25 p. 801). The
time for the shock wave to pass in a plasma depends on the
ion-ion collision time,'tc, behind the shock (Von Karmanzs).
Therefore the validity criterion for the von Neumann model
is that ’tc/T:R < < | behind the gas dynamic shock.

In order to get some physical feeling for the conditions
inside thermonuclear shocks, we shall note some typical values
of parameters such as temperature, pressure and speed. The

initial gas mixture (point 1 on figure 2) is assumed to pe

fully ionized to avoid the mathematical complications of

f
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FIG. 2 DETONATION IN A NON-RADIATING GAS ACCORDING
TO VON NEUMANN MODEL.
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dissociation and jonization. Hydrogen is fully ionized at

about 5 X 104 oK (Brezin927). Initial number densities

of interest for controlled thermonuclear fusion are

= 1015 - 1016 cm-3 (Glasstone and Lovbergze}. The

detona-

tion speed, which is also the initial gas speed relative to

a reference system moving with the detonation, is about

logcm/sec.

The shock wave heats the gas to a temperature of about

. 1010 oK. Behind it (point 2 on figure 2),

number densities

have increased by a factor of four and gas speeds have

decreased by the same factor (see section 2.3). As

the

yeactions go to completion inside the deflagration wave,

the density, speed, pressure and temperature change

no more

than a factor of two. The characteristic temperatures and

number densities behind the deflagration (point 3 on figure 2)

are about 1010 OK and 1015 c:m-3 respectively.
The temperatures and speeds characteristic of

nuclear shocks are much higher than those associate

thermo-

d with

other kinds of strong shock waves. A graph of post-shock

temperature VS. wave speed for hydrogen is shown in figure -

As the wave speed is increased, the gas first becomes disso=

ciated and then ionized. As the wave speed is increased

further, radiation processes in the gas become important.

The post-shock temperature is given by the pankine-Hugoniot

v, viona A . St S i S &
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conditions for a gas dynamic shock. In the dissociation
and ionization speed-temperature regimes, the appropriate
chemistry has been incorporated into the jump conditions
(Taussigzg). In optically thick atmospheres, the radiation
energy density becomes important compared to the internal

22). Radiation

energy of the gas for u, > 107cm/sec {Koch
terms must be included in the jump conditions for such shock
speeds., For an optically thin atmosphere, radiation energy
losses become important only for shock speeds above logcm/sec.
There are no Rankine-Hugoniot conditions for shocks in opti-
cally thin atmospheres because no steady state is established
behind the shock. The post-shock temperature shown in

figure 3 is the maximum temperature reached in the structure
of the shock (Grossz4).

The post-shock temperature for thermonuclear shocks is
the temperature behind the entire wave, gas dynamic shock
plus deflagration. It is given by the set of Rankine-
Hugoniot conditions that include the energy released and
the change in gas composition due to reactions (see section
2.3) . The lowest detonation speed which satisfies these
Rankine-Hugoniot conditions is called the Chapman-Jouguet
speed. If the detonaticn travels with the Chapman-Jouguet
speed, the downstream flow is sonic. For speeds greater

than the C~J speed, there are two solutions to the Rankine-

et Bk A
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Hugoniot conditions. The upper branch, a strong detonation,
has subsonic flow behind it; the lower branch, a weak deto-
nation, has supersonic flow behind it (HayesBo). A graph
of post-shock temperature as a function of wave speed for
deuterium is shown in the figure 3. Deuterium and tritium
fusion reactions have much larger cross sections than
hydrogen fusion reactions and are therefore of greater
interest in problems of controlled thermonuclear fusion

31

(Taylor and Tobolsky ).

2.2 Physical and Mathematical Assumptions

The physics to be described in a complete treatment of
a thermonuclear shock structure problem includes (1) reac-
tions, (2) radiation, {(3) transport processes, (4) non-equi-
librium effects due to the multi-component nature of gas,
and (5) the effects of applied electromagnetic fields. Reac-
tions occur in the gas which has been shock heated. Some
of the energy added to the gas by reactions is lost through
radiation. Traasport processes due to the viscosity and
thermal conductivity of the gas account for the bulk flow
of momentum and energy. Since the gas is a mixture of
several kinds of ions end electrons, non-equilibrium pro-
cesses (e.g., diffusion, charge separatican, and energy and

momentum transfer between species) occur. External magnetic

S B s o Pen i n e s v, e+t ¢
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fields, necessary to contain a thermonuclear plasma in order
to tap its energy, further complicate the physics by adding
cyclotron radiation and hydromagnetic effects.

A mathematical treatment of thermonuclear shock
structure including all the relevant physics would requirve
the solution of the set of non-linear differential equations
that result from a coupling of the many species Boltzmann
or continuum equations with the radiative transfer equation
and Maxwell's equations. To reduce the number of differen-
tial equations in the problem to a manageable set, some
of the physical effects must be igrored. The present treat-
ment will include reactions and radiation while neglecting
transport phenomena, non=-equilibrium cffects due to the
presence of more than one species, and the containment problem.
The many species nature of the gas is incorporated in the
state and continuity equations only.

A list of assumptions used in the treatment of thermo-
nuclear shock structure without radiation in tritium and
deuterium-tritium mixtures is given below. It is followed
by a discussion of their physical validity. The further
assumptions that must be made when radiation is included
in the problem are then listed and discussed.

PHYSICAL ASSUMPTIONS FOR THERMONUCLEAR SHOCK STRUCTURE

1. 1he von Neumann model of detonations is valid:
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Ef the shock wave is thin compared to the deflagration
at
‘ g wave; all reactions take place in the deflagration
% region. Since the influence of reactions on the
7% detonation structure is of primary interest, the i
% shock is treated as a discontinuity and only the
é deflagration structure is studied.
'g 2. Transport phenomena due to viscosity and thermal
§ conductivity are negligible in the deflagration. 3
3 3. Non-equilibrium effects due to the presence of é
more than one species are negligible: All species
| ’ travel with the local gas speed; the particles of

each species have a Maxwellian distribution of
energies at the local gas temperature; charge
separation is neglijible.

4. One-dimensional, single fluid, continuum equations
provide an adequate description of the phenomena.

5. All macroscopic velocities and temperatures are

i * low enough so that relativistic effects can be
Y
' neglected.
6. There are no applied electromagnetic fields.
k Assumptions 1, 2 and 3 were made in order to simplify

both the mathematics and the physics of the thermonuclear
_ shock structure problem. Their physical validity depends

on the ratios of characteristic collision and reaction times
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for typical temperatures and number densities inside
thermonuclear shocks.

Spitzer32 defines the following characteristic times
for a plasma: The time required for a single species, non-
Maxwellian distribution to approach the Maxwellian distri-

butiocn is

5 3
T = 11.4 A7 T* (°K)
€ -3, .4
n(cm 7)) 2° fnA

sec, (2.1)

where Z is the atomic number of the ion, A is its atomic

weight, and

A 3 kT . (2.2)

The self collision time for electrons, "Cce, is just T:c
with Ae= 1/1836, the atomic weight of electrons. The rate
at which equipartition of energy between two groups of

particles is established is

3
x
T o= 587 ! 222 e S I (2.3)
N2 knA \R) A,
If the two groups are ions and electrons, and if T1:3 Tz,
then s
tqu 5.87 _P:i T—;——ﬂ—) secC. (2.4)
A n 22 fnaA

o
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The time associated with viscous processes, which is what

von Karman26 calls the characteristic time associated with

R

A S e T R NI

thermodynamic transformations, is the ion-ion collision

at ) o
il

Ti g rfgenn R o W o e et N e

time. The time associated with thermal conduction processes
is the ion=-electron collision time. Another relevant

characteristic time is the mean time between reactions

_ 1l
TiR T nlev) ? (2.5)

where (vv)> is the reaction cross section times the relative

r speed of the interacting particles averaged over the product

f- of their distribution functions (Osborn35

e

The ratios of the collision times,’tc,'t

ce’ Leq e

independent of temperature and number density. For a tritium

plasma (A = 3),

K—‘E = 74.3 and :t:ﬂ-q = 38.2.
; Tee lc
’ Ratios of collision times to the reaction time must be eval-

uated separately for each temperature and number density

of interest. For n = lO15 cm-3 and 109 Ok < T & 10lo oK,

.
oo
-

In A (which is not a very sensitive function of temperature

ot A

l and number density) = 21. The values of Leq/ Ur and

'tc/ T:R (with A = 3) are given in Table 1 for several

temperatures in this range.
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=) | Te/T
° O
T (°K) {(tv ) ) eq/ (R Te/Tr
1 x 10° 2x 1077 1 0.0 0.0006
!
5x10° | 8x 10 Y 1.02 0.027
|
1x100° | 1x107% | 3.8 0.11
i f
2 x 10%° 3x1067% 1 3005 0.79

TABLE 1. Ratios of Characteristic Times

The shock region is thin compared to the deflagration
region (assumption 1) if Tc/TR {<1 behind the shock.
For a tritium plasma the temperature inside the shock rises

from its downstream value, 5 x 104 Ok, to 10]'0

OK before any
reactions take place. However, as the temperature approaches
its post-shock value, ion-ion collision times and reaction
times become comparable. Therefore the reactions may not
be completely confined to the deflagration wave; some may
take place in the tail of the shock.

Viscosity is negligible inside the deflagration (assump-
tion 2) if '[c/I:R ¢l for typical temperatures and number
densities. The requirement for neglecting thermal conduc-

tion and diffusion is that (t c/ T R )(1/M2 >L {1 (von Karmanze).

A s P
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' * M is the Mach number, the ratio of the local gas speed to

the local sound speed:

- 2.5
M =(m> : (2.6)
R

¥ , the ratio of specific heats at constant pressure to

ey L PO

R

that at constant volume, has the value 5/3 for a plasma,

‘ - a mixture of monatomic gases. It can be shown (see section

2.3) that inside the deflagration,

2

1
- ¢ { .
R !

Since (’t c/ LR )( 1/M2) > 1 inside the deflagration, the
effects of viscosity, thermal conduction and diffusion would
have to be included in a fuller treatment.

The requirement for the ions and electrons to be in ther-
mal equilibrium (assumption 3) is that T:eq/WfR < ¢l inside

the deflagration. The reaction product ions are released with

T

Mev energies. The electrons, since they are not involved in
[ reacticns, are cooler than the ions. Although reaction
_ product ions transfer energy to fuel ions in a time comparable
M ‘ to the reaction time, energy transfer from the hot ions to
the cooler electrons occurs much more slowly. (For
L T=2x 10lo OK, (c/ TR ° 0.8 while r[eq/TZR = 30) .

The neutrons released in reactions, (which we assume are

B
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kept in the gas), must be in equilibrium with the ions and
electrons for the gas to be in thermal equilibrium. Cross
sections for neutron-triton scattering, Ty are 2 1 barn
for Mev neutron energies (Huches and Schwartz33). A 10
Mev neutron goes through 2-5 collisions before its energy
reaches 2 Mev (Glasstone34). The neutron collision time,
’tcN 2 (number of collisions to thermalize ) x l/(nc&VN).

For '1‘-'1010 OK, \_/N is 109 cm/sec, Therefore the ratio of

a8

s 8 A < R

the neutron-ion collision time to the ion-ion time,T;N/T; isx 1,

and the neutrons thermalize with the ions in a time
comparable to the ion-ion collision time. Equilibration
times for neutrons and electrons, however, are much larger
than those for neutrons and ions since neutron-electron
collision cross sections are very small. The neutrons,
like the ions, are therefore not in equilibrium with the

electrons.

The gas has local charge neutrality if the electron

Plasma frequency,

4 ne e2
W\" = k—_—m (2.7)
e

-

(Spitzer32) is much larger than the frequency associated

with the shocn wave, L R - AW/T . For the typical

temperatures and number densities mentioned previously,
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Therefore the assumption of charge neutrality is a good one.
One-dimensional, single fluid, continuum equations
(2assumption 4) have been used in many studies of shock
structure (e.g. Gilbarg and Paolucci4 and Kochzz). A
discussion of the use of continuum fluid equations rather

than the Boltzmann equation is given by Gilbarg and

Paolucci4 and by Gross.24 Treatment of the ions, neutrons

and electrons as a single fluid neglects the lack of thermal
eguilibrium between the electrons and the ions and neutrons.
If the electrons are assumed to be as hot as the ions and

neutrons, a significant fraction of them would have relati-

vistic energies. The non-relativistic equations are valid

(assumption 5) if KT <<.mc2 for each species. (mc2 for
electrons is = % Mev.) The use of non-relativistic equa-

tions is justified physically, however, since the electrons
are actually cooler than the ions and neutrons.

The following physical assumptions are made in addition
to those listed previously when radiation is included in
the thermonuclear shock structure problem:

7. Radiation effects are significant in the deflagration

region only.

G e Sl e
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8. The gas is optically thin to radiation of all

frequencies.

O
W

The radiation comes from ion-electron bremsstrah-
lung only.
Since the von Neumann model of detonations is assumed,

the effects of radiation are studied in the deflagration

region only. In figure 3, it is seen that for thermonuclear

shock speeds, the maximum temperature behind an optically

thin shock is only slightly lower than the temperature

oty AL N T R A
A q Elirs o M e L Trr et Pl ,!:4:._ :

behind a non-radiative gas dynamic shock. Therefore assump-
tion 7 is valid.

‘ A gas is optically thin to radiation if the photon
absorption mean free path, ):; , for all frequencies, v ,
is much larger than all the other characteristic lengths in
the problem. The reaction mean free path is the largest
characteristic length for non-radiative thermonuclear shocks.
Therefore the gas is optically thin if )\‘;) > > )\R for

10 15 =3

all frequencies. (For T =100 ©%Kand n =10 am ~, X\

R
is =X 109cm). The only type of radiation occurring in a
fully ionized plasma in the absence of magnetic fields is
bremsstrahlung. Since non-relativistic equations are used,
only ion-electron bremsstrahlung is considered; electron-

electron bremsstrahlung is neglected. An approximate expression

for the mean free path for absorption of a photon by a hydrogen

! O s e -
P L i 3 ot e }
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isotope plasma, as the result of a free-free transition,

is (Glasstone and Lovbergza):

'y 3
5 P (kev) - cm
2 L ]

v -
>\p ~7 x 10 (2.8)

The power emitted per unit wavelength per unit volume due
to ion-electron bremsstrahlung (Glasstone and Lovbergza)
is

12.4) ergs
AT cnd R-sec

-23_ ¥ 2, =3y -2
26.01 x 10”°n_ L; (ni 2%) 7% X\ "%exp(- (2.9)

=1

The maximum value of (.i.l:’ occurs for
aA

] .82 g

T (kev)

(2.10)

20

. -3 N
For T = 1 Mev, N is 6.2 x 10 R (Vo 5 % 105 cps).

The photon absorption mean free path for this temperature

-i | and frequency is = ].029 cm, which is much larger than the

reaction mean free path. The smallest frequency for which
15

Vv

o]
N eps ( > =3 x10° R). The

' : 15

ratio of the power emitted at a frequency of 10°~ c¢ps to

is > > )\R is 1+ = 10
1 2 20 ; ~-11
{ that emitted at a frequency of 5 x 10 cps is ~ 3 x 10 =
¢

3 Therefore the fraction of radiation energy emitted at

g frequencies for which the gas is not optically thin, is

negligible. It is, therefore, a good assumption to treat
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the gas as an optically thin atmosphere.

2.3 Shock Structure Equations Without Radiation

The following are the time-deperident continuum f£luid
conservation equations for the deflagration wave (von

Karman26):

The continuity equation for the ith specie is

[

‘N c .
-El + f?; (n, u) =WwW,, i=12,..., N, {2.11)

o

where N is the nuniber of species in the mixture, and Wi is
the production rate of the ith species(see section 2.4).
Multiplying each continuity equation by m, and summing over

all species, one obtains the mass flow equation,
£ 4+ = (Pu) =% m W, (2.12)

. (2.13)

where = 21 ni mi

If no particles (e.g., neutrons) escape from the gas, and
if negligikle mass is lost or created in reactions, then

= m,oW o= 0. The mass, 4m, lost in a nuclear reaction is
i
Am = (m1 + m2) - (m3 + m4) ’ (2.14)

where my and m, are the masses of the reacting nuclei and
m, and m, the masses of the product nuclei (Evans36). If

Am/(ml+m2) is < < 1, the mass lost in reactions can be

R T F e et e ot




g sy, R P

% 25

neglected in the mass equation. For thermonuclear reac-

O
s . gn

tions, Am/(ml + m2) is ¢ 0.01, so mass is conserved to a

’ , high degree of accuracy.

A momentum flow equation for each species in the mixture,
analogous to the species continuity equations for mass flow,
can also be written down. The momentum flow equation for
the mixture is obtained by summation of the species momentuﬁ
equations., If the viscosity and thermal conductivity of

% the mixture and the diffusion of the species are neglected,

the momentum flow equation for the mixture is,

.h. 3 .b_ 2 = _Q__
, £ (Fu) + £5 (PU7) = (2.15)
i
where p =y n kT. (2.16)
i
1 The energy flow equation for the mixture,which is derived
by summing the energy eqguations for all the species, is
u2 AL u2
A .ﬂ.— e = -—— - 2 -
o 9 (Plety = g+ & (Fulety = ag)) = - &lew), (2.17)
ot

% g where e is the internal energy of the mixture, and Ay is
a volume energy source due to thermonuclear reactions.

If the shock is viewed from a coordinate system moving
with the shock speed, all time derivatives in the continuity,
1 mass, momentum and energy equations vanish. If the result-
| ing time=~independent equations are integrated once with

respect to the spatial variable, x, they become

B0 0 T e R N W 2 ) o
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pu =A, (2.18)
2
p+pu =B, (2.19)
w2

where h = pu + e = 7éi ‘S'r is the enthalpy of the gas
(which is assumed to be ideal).
The constants of integration, A, B, and C,evaluated

from the steady state conditions upstream and downstream

from the shock (see figure 2), are

A=pu =pu,, (2.21)
.2
B=p, +P Uy =Dy +p, s, (2.22)
u2 u2
and c=h +" =n,+% - o . r2.28)
2 2

In state 1 the reactions have not begun so oy = 0. The
reacu..ons have gone to completion in state 3 so Ay = Q,
the energy released per unit mass of the initial mixture
if it reacts completely.

Thermonuclear shocks are very strong shocks, i.e.,
pl‘i<'Pl ulz. The Rankine=-Hugoniot conditions for a thermo-
nuclear shock follow from equations (2.21), (2.22), (2.23)
and the assumption of a strong shock. The ratio of the
gas speed behind the thermonuclear shock to the gas speed

ahead of the thermonuclear shock, (the shock speed), is

W

T
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: 2 2\3
| 5uOOf oy (1- 2¢7*-1) o/u,?)
; -u— = = IY_-l-]T t — (2.24)
1 ] Y+ 1
where §=2 .,
i 3
; The minimum shock speed that satisfies equation (2.24), the
Chapman-Jouguet speed, is
A
&
u = (20¢% - 1) o). (2. 25)
For C-J flow conditions, equation (2.24) reduces to ;
;
. {
3._.¥_ _3
u, ¢+l 8 ° (2520}
1
The ratio of the gas speeds behind the gas dynamic shock to that
in front of it, "2 , is given by equation (2.24) with Q = O.
u
1 u
The two values of _2 that satisfy equation (2.24) with
i |
: Q = 0 are
R
i u. 1+l & —ais S
L 4 1 1
One feature of thermonuclear shocks is that the tempera- ;
?‘ ' ture of the gas behind the thermonuclear shock, '.l‘3 , is indepen- {
dent of the initial temperature of the gas. T3 is related ‘
! to the energy released in reactions, Q, and the shock speed,
g
ul) by
2 2




;'.‘J.!.: ’Pjg ‘ }
e . Pk .f
- . aaall i i e
28
B
B ry=2 2L o o (XL wZhiy 12 (v?-n g
W, ¥+l ¥+l w2
1 (2.28)

R T, _ (-1 )
For C-J flow, s 3 2(“_1 )l’ Q=% Q. (2.29)
The temperature c¢f the gas behind the gas dynamic shock,
Tz, is given by equation (2.28) with Q = 0, i.e.,
-R—Tz-g i(_x_:l_). u 2 . (2.30)
W (y+1)2 1
2
If the shock is propagating with the C-J speed,
RT, (¢-1)2 )
g = 4 Q = '3" 2 . (2.31)
2 Y +1
and

The temperature behind the gas dynamic shock, Tz’
that behind the thermonuclear shock, T3, are plotted as

functions of the shock speed in figure 4. The gas is assumed

to be a deuterium-tritium mixture containing equal numbers
of tritium and deuterium ions. The C~J speed for the mixture

is 3.48 x 109 cm/sec corresponding to a post-detonation

2 for all

The increase in specific enthalpy across the

temperature of 4.2 x 1010 ok, T, is higher than T

shock speeds.
deflagration is accompanied by an increase in temperature,

since the mean molecular weight of the mixture remains con-

stant as the reactions occur.

B e
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The temperatures behind the gas dynamic and thermo-
nuclear shocks as a function of shock speed for a tritium

gas are shown in figure 5. The C-~J speed is 2.55 x 109cm/sec,
10

creating a temperature of 2.2 x 10° ©K behind the thermo-

nuclear shock. The temperature behind the deflagration

(thermonuclear shock) is equal to the temperature behind

the gas dynamic shock for shocks propagating with the C-J

speed. T3 is ™ T2 for shocks propagating with speeds

between the C-J speed and 3.4 x 109 cm/sec. If the shock 3

e 4 SRS

speed is increased further, the temperature behind the

deflagration will be lower than that behind the gas dynamic

shock. An increase in the enthalpy of the gas as the reac-

tions occur does not necessarily show up in increased

temperatures,as the mean molecular weight of the mixture

et A2 5 B

decreases with reactions. The temperature behind a gas i
dynamic shock propagating in a gas containing the reaction
products of tritium fusion reactions, (alpha particles and ;
neutrons in a l:2 ratio by number), is also shown in figure

4 for comparison.

2.4 Reaction Rates

! The source terms, Wi, in the species continuity equations,
must be specified in order to solve the non-radiative shock

structure scuitions across the deflagration. These functions
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are related by the requirement for mass conservation,

m, Wi = 0, It can be shown that they all depend on
a

the reaction rates for the fusion reactions taking place
in the plasma.

The reaction rate for binary nuclear reactions is

n. n
we -2 (qv) (2.32)

1+ 4.
)

where n, and n2 are the number densities of the interacting

nuclei and where the Kronecker- J takes into account the
possibility that the reacting particles are of the same

kind (Al = Az). If each species has a Maxwellian distri-

bution of velocities at the same temperature, the reaction

probability <(tv)> is given by (Glasstone and Lovbergzs)

4 2 2
(rv ==, (—’L)a f:rvexp (_,uv ) v2 dv, (2.33)
T 2xr/ 2 kT

mom

m_-+Hm
L 2

T = cross section for binary nuclear reactions, and

where/u.= is the reduced mass of the system,

v = relative speed of the interacting nuclei.
It is convenient to express (1V) as an integral over

center-of-mass energy, Ecm' Since

1 2
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the reaction probability can be written,
z ¥ E
eon L BT 1 |3 j F(E_) e (— eam)| E__ AE_ . (2.35)
TN) = 4 P |- R
(VY 4@5 (ZTTkT ) : cm = cm  cm

Nuclear reactions are studied in the laboratory by sending
beams of nuclear projectiles toward a target. Therefore
nuclear reaction cross sections are usually given as a
function of the laboratory energy of the incident particle

E If the target nuclei are in motion, as in a plasma,

L.

EL is the relative energy of the interacting nuclei. With

the relation between E_ and E__,
L cm

E =0E_, (2.36)

the reaction probability, written in terms of EL, is
8T AL |3 (7 «BL\ E aE . (2.37)
(V) = 5 < ) } 1’(BL)exp(-;-ﬁ:) L L'
m 2 WKkT 5

A reaction mean free path, XR’ a mean reaction time,
T R’ and a reaction power density can be defined in terms

of (1v) . If we let

(e

the reaction mean free path is defined as

MRV 'ER, (2.39)

o AR ks 5 |
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L
8 kT\* : . S : ;
where (v> = :aj;-, for a Maxwellian velocity distribution. (2.40)

The power density is just the reaction rate multiplied by

the energy released per reaction,

&
AA,

s - n. n
} Py 1+ 2{Nda, s (2.41)
2

h where QR = (am) ¢

2.5 Shock Structure Equations With Radiation

No steady state is established behind thermonuclear
shocks propagating in a gas that is losing energy through

radiation. Therefore, there are no Rankine-Hugoniot cond.-

4 tions which determine the post-shock state of the gas given
its initial state. Since no steady state is established
behind the shock, it is not obvious for the radiative case
that a reference frame travelling with the shock speed is
one in which all time derivatives in the structure equations
vanish.

A physical argument can be used to show that the shock
frame is a steady reference frame for shocks in optically
thin atmospheres. It is apparent that successive particles
! of gas, passing through the shock, go through the same history
in any region containing the shock that is much thinner than

& a photon absorption mean free path. The profiles of the

N L e e - APk,
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flow variables, viewed in the shock frame, are therefore
steady throughout such a region. Thus, we can validly
set time derivatives equal to zero in the structure equa-
tions if we limit the integration of these equations to

a region containing the shock that is much thinner than

a photon absorption mean free path. (The structure equa-
tions may be integrated over all space fcor thermonuclear
shocks in a non-radiating gas.)

All of the non-radiative thermonuclear shock struc-
ture equations are valid for thermonuclear shocks in
optically thin atmospheres except the energy equation.
The radiation pressure in the radiative momentum equation
and the energy density term in the energy equation are
negligible because all of the radiation is assumed to
escape from the gas. The only radiative term in the energy
equation is gf , the divergence of the radiative flux,
(Vincenti and Kruger37). The energy flow equation with

radiation for thermonuclear shocks in an optically thin

atmosphere is

d
g—x— (Pu (h + 32;3 - qp)) + 'd_xq = 0. (2.42)

If equation (2.42) is integrated over all space and then

divided by the mass flow constant, ;, u = A, then

] = ) - ’ T T T e e W g )
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i , 2

h +

X
1 ‘f dq
- + = —_ ax' = ¢, (2.43)
qTN A o dx'

NIG

An expression for gq can be obtained from the radia-

dx
tive transfer equation,
aI,
/M.a = j:)( JV - K‘V IV)’ (2.44)

where Iv is the radiative intensityn/x is the cosine of
the angle between the x-axis and the direction of observa-
tion of Iv,‘pjv is the volumetric emission coefficient, and

3
f'Kv is the volumetric absorption coefficient (Goulard 8).

For an optically thin gas, emission processes are more

important than absorption processes so f’ju > kav Iv

(Vincenti and Kruger37). The radiative transfer equation

thus becomes, i
dI

i /{( -—2 =f-' jv - (2.45)
"i dx

If it is integrated over all frecuency and solid angle,

%-t assuming that the emission is isotropic, we get an expression
| d
for a& »
] da _ .. (.. .
B 33—4- }rJV dv, (2.46)
where q=2% | JuI du du. (2.47) |
e - }
¥

v e s R R Rt e R P fﬂ: R R A

st X =




An expression for the vc.ametric emission coefficient,
fjv, must be obtained in order to evaluate the integral
in equation (2.46). Since there are no magnetic fields
and hence no cyclotron radiation, and since recombination
of atoms is negligible at thermonuclear temperatures,

the only non-neglible radiative process is ion=-electron

bremsstrahlung. Therefore the volumetric emission coeffi-

o W‘I";'-’"""-Wwﬂw"- = ety E bt Ry TR R e b el <% j- o 5
" . AT e SRS el e o T i e D i B ¢

i cient is just the power due to bremsstrahlung per unit
I
} volume per unit colid angle per unit frequency, which can
% be obtained from equation (2.9) by changing variables from
| wavelength to frequency. If the resulting volumetric emission
; coefficient is integrated over all frequency and solid angle,
(assuming isotropic emission), one obtains an expression
for the power per unit volume due to bremsstrahlung of all
frequencies, Pon (Glasstone and Lovber928)=
=27 - ek 1o er
Ppg = 1.57 x 107" n_ ¥ (n, 2%)7% (o) SE— . (2.48)
i cm™ sec
1
The radiation term in equation (2.43) is just K-j Por dx'.
In summary, the shock structure equations for a radia-
tive thermonuclear shock in an optically thin atmosphere are
pu =A, (2.18)
2
p#* pu = B, (2.19)
) P o S TS e T - A S e e b SR A N ‘
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3
i
ﬁ 2 L X
. _ - 3 ) =
h+2 q‘I’N+A § PBRdx' c, (2.49)
p =fs% L (2.50)
d e
; and ax (ni u) = Wi’ i=l, 2,..., N, (2.51)

where A, B, and C are defined by equations (2.21), (2.22),
and (2.23) and where the expression for PBR is given by
equation (2.48). The remaining undefined quantities, the
| thermonuclear energy release term, D2 and the rate func-
! tions, Wi, depend on the specific nuclear chemistry and will
; be discussed in the next chapter.
The shock structure equations have now been developed
as far as possible without reference to a particular reac-
ting gas mixture. In the next chapter, the nuclear chemistry

appropriate to three different reacting gas mixtures, will

; be discussed and incorporated into the equations.
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CHAPTER III

THERMONUCLEAR SHOCK STRUCTURE EQUATIONS FOR THREE DIFFERENT

GASES

The general set of radiative thermonuclear shock struc-
ture equations derived in Chapter II will now be developed
to apply to thermonuclear shocks in (1) deuterium-tritium
gas mixtures with equal numbers of deuterium and tritium
ions, (2) a pure tritium gas, and (3) hydrogen-tritium gas

mixtures. The three cases will be discussed in succession.

R T

After an examination of the properties and cross sections
of the nuclear reactions occurring in the gas mixture, the
equations that govern reaction kinetics will be derived.

: The particular set of shock structure equations for the gas

mixture will then be put into a convenient dimensionless

form.

3.1 Fusion Reactions in Deuterium-Tritium Mixtures

The following reactions occur in deuterium-tritium gas

mixtures (Wandel, Hesselberg Jensen and Kofoed-Hansen39)
1. D+D-T + p,
2. D + D-—aHe3 + n,
3. T ok D---oHe4 + n,
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S0 T = T-~—aHe4 + 2n,

6. He3 2 He3—ﬁ He4 + 2p,

7 T+He3—~He4+p + n.

Reactions 5 through 7 have smaller cross sections at most
energies than reactions 1 through 4 and are usually neglected
in the treatment of thermonuclear problems. A graph of the
cross sections for reactions 1 through 4 for deuteron energies
up to 1 Mev is shown in figure 6.

The kinetics of deuterium reactions (reactions 1
through 4) are complicated because deuterium reacts with
its reaction products, tritium and helium=-3., Furthermore
neutrons and protons are both intermediate and end products.
Although problems involving the full set of deuterium reac-
tion kinetics eauations have been solved, it is considerably
more difficult to deal with a coupled set of fluid and
Kinetics ecuations for deuterium,

It has been assumed, in the treatment of ithe thermo=-
nuclear shock structure in a deuterium-tritium mixture with
ecual numbers cf deuterium and tritium ions, that only the
T(S,n) He4, (?=D), reaction occurs. Thls assumption is
well justified for temperatures below 100 kev as reaction
probabilities for T-D reactions are 100 times greater than

zhese Scr the D-D reacticns and 10 times greater than that
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L I

4
for the reaction He3 (d,p) He , (He3 - D), (see figure 7).

T R T

For Mev temperatures, the reaction probabilities for the

three reactions are comparable. However, since reaction

rates depend both on reaction probabilities and the pro-
ducts of number densities of the reacting nuclei,
W= nln2<qw1>), He3 - D reactions can be neglected because

of the small He3 number densities. The ratio of the reaction

w e e e

rates for T-D and D-D reactions, assuming they have the same

probability is

[ wa N 2nT
i "op “p

- The triton population is enriched at the expense of the
{ t deuteron population as tritons are born in D-D reactions,
so as the reactions proceed, the T-D reaction becomes more
important than the D-=D reaction.

The T=-D reaction cross section has a wide resonance
; whose peak is at 0.107 Mev labcratory energy (see figure 8).
K The lifetime of the associated state is 2-3 times the natural
| nuclear lifetime, the time for a deuteron to traverse a tri-

40). The main reaction mechanism at

},’ tium nucleus (Kaplan
these energies is formation of a He5 compound nucleus
which decays into a neutron and alpha particle. At higher

energies, stripping reactions dominate; an alpha particle

1 and neutron are formed directly when the deuteron strips
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REACTION PROBABILITIES FOR DEUTERIUM FUSION
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a deuteron from a triton (or a triton strips a proton from

a deuteron).

The only reaction between a deuteron and a triton

that is observed at Mev temperatures is T(d,n) He4. 17.6

Mev in released in this reaction. The threshold energies

t

for two other reactions, T(d, 2n) He3 and T(d,pn) T, are

o
3{"
L
W
X
¥
2

2.226 and 2.99)1 Mev (center of mass) respectively. These
reactions are not observed for deuteron laboratory energies

below about 12~14 Mev (Ajzenberg-Selove and Lauritsen4l).

e v

i 7 According to classical mechanics, no reactions should
N - occur for deuteron energies less than the Coulomb barrier energy
which is = 660 kev for a tritium nucleus. Quantum
mechanically, deuterons with energies less than the barrier
energy have finite probabilities of tunneling through the
barrier. The probability of penetrating the barrier, the

Gamov factor, is

2 3
e 2.2 e (2u)
7ok P =exp (- ZEL |z exp|- 22— ) ) (3.1)
. X (E) A (E)?
; 2.2 e2
E where r = "172° is the classical distance of closest

E
approach in a collision and \ =

h . .
GE)t is the de Broglie
wavelength. The maximum reaction cross section for an

&
s-wave interaction (neglecting Coulomb repulsion) ism X .

A plausible formula for the reaction cross section for

L o bt o T B
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energies much less than the barrier height, is the product
of the maximum collision cross section and the Gamov barrier

penetration factor. The Gamov reaction cross section

),

Although the theoretical value

BI

- (3.2)
(E)*

exp(

has this energy dependence.
of B', given in equation (3.1) is sometimes used, the values
of A' and B' are usually obtained from the best available

low energy data.

The Gamov cross section fits the experi-

mental data well for deuteron energies less “.an 20 kev,

3.2 Reaction Probabilities for Tjd,n)He4 Reactions

The reaction probability for T-D reaction must be
computed numerically for the tenperatures occurring in
thermonuclear shocks. Cross sections for energies between
1 and 10 kev were computed from the Gamov formula with

A' = 2,19 x 104 barns kev and B' = 44.24 (kev)l/z.

106
other values of the cross section for energies between 10
kev and 10 Mev have been taken from the experimental data
shown in figure 8 (LA-2014)42. {sv) was evaluated with

a Simpson's 1/3 rule adapted to unevenly spaced data points.
(Uneven spacing of data points made it possible to deter-

mine the number of points according to how rapidly the

cross section was changing with energy.) A graph of (ov)

’ -
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for kT between 10 kev and 3 Mev is shown in figure 9.
Reaction probabilities, {ov) , for several values of

kT between 1 kev and 150 kev were compared with the results

of earlier calculations done by Wandel et al39, Thompson44,

and those quoted by Glasstone and Lovberg 38 (p. 18, based

45
).

on a combination of the work of Wandel, Thompson,and Tuck
These results are presented in Table 2,

The cross sections can be read accurately from the
graph to two decimal places only. Therefore agreement to
two decimal places between our results and those obtained
by the others is all that is meaningful. The experimental
data used by Thompson and Glasstone and Lovberg is not
the data that was used in our calculation. Wandel et al,
however, used the data presented in LA-2014 and their results
agree with ours to two decimal places. Disagreement bet-
ween our valves of (v:> and the values computed by Thompson
and Glasstone and Lovberg for kT= 2 kev is explained, by the
fact that the contribution of the cross section for lab
eneragies below 1 kev was neglected in our calculation.

However, for the purposes of this study, the value of <e+>

at kKT = 2 kev is never used.

PN
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FIG. 9 REACTION PROBABILITIES FOR T(d,n)He* AND T(t,2n)He*
REACTIONS BASED ON MAXWELLIAN DISTRIBUTIONS.
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Glasstone and| dav)
Wandel et al Lovberg Thompson | Fuller
3 x 10749 2.76 x
1.3 x 10717 | 1.4 x 10°%7 | 1.35 x
1.11 x 10”7 lax 1078 Y.osx 10718 1.12 x
4.3 x 10716 | | 4.30 x
'} |
. 5.58 x 10710 | - 15.62 x
. , |
50 8.54 x 10718 | 8.60 x
. t
60 8.7 x 10710 | 8.86 x i
100 ' 8.45x 10 g.1x10t% 5.0 x10® 8.47 x 5
- = +
150 7.04 x 1018 7.00 x 107 1° F
- 4
£
TABLE 2. Reaction Probability for T(d,n)ﬁe4 Reaction £
3.3 Kinetics Equations for Deuterium-Tritium Reactions

If only the T-D reaction occurs, a reacting deuterium-
tritium mixture is made up of tritons, deuterons, neutrons,

alphas and electrons. The total pressure of the mixture is

p=(n + n + n + (3.3)

+ 5
T D N n, + n kT

The number densities of the different species can be related

to each other by the equations of charge conservation,

(3.4)

b S b ‘
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electron number flux conservation (electrons do not partici-

pate in the reactions),

neu =F, (3.5)

can be evaluated from the initia] conditions. Since the

initial mixture contains deuterium and tritium ions in

e€qual numbers,

ne. = ZnT . (3.7)

F = ZnT u, , (3.8)

= 2
and A = 3 nTl mT u ., (3.9)

A combinatior of eéquations (3.4) - (3.9) yields

(nT - nD) = 2(nN - n) . {3.10)

N

Since n, = M » and since it is assumed that the species
1 1

do not diffuse,

< v
S e B R 5 e
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(3.11)

for all x. Therefore, it follows from equation (3.10) that
(3.12)

for all x also.
The continuity equations for the species are not all

independent. Tritons and deuterons are destroyed at the

same rate, so Wi = WD. Furthermore, neutrons and alpha
particles are created at the same rate, so w& =W . Since
mass is conserved in the reactions, 2% m, wi = 0, and there-
fore w& = -Wi. As expected, the rateof triton and deuteron

destruction is equal to the rate of neutron and alpha creation
There is only one independent continuity equation (which we
choose to be the triton eguation).

In order to eliminate number densities from the flow
equations, we define a dimensionless variable X , the ratio
of the density of the reaction products to the total density

at the point x:

- nN mN + l‘l‘4 m‘

, (3.13)

where

~ = ny, m, + ng, mD + nN mN + nw mo. (3.14)
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Before the gas begins to react, n_= n,6 = A= 0.

N L
After the gas has reacted completely, n

0, so
p = Pp = 0, so A&=1.
A combination of equations (3.11) - (3.14) gives expressions

for the neutrnn and triton number densities:

=3
nN =3 m , (3.15)
-3 Lld= .
and n, =3 (3.16)

With these expressions for n_ and n the state egquation

T N’
(3.3) becomes,
_l2pk T, (3.17)
p; = 5 “\r
1 Qrn : 12k R
which is independent of « . Since === = —— , the state
Sme 5/4
equation can be written in its usual form for a mixture:
R
p=rz T, (3.18)
~ 5
where W= e

In general, a state equation depends on the degree of
reaction only if the number of particles before the reaction

is not egual to the number of particles after the reaction.

1

For the reaction, T3 + Dz-—rn + He4, the number of particles

before and after the reaction is the same; for the reaction,

3 3

T + T — He4 + 2nl, however, the particle number goes from

o R Aot ¢ o - — % T e
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two to three. If the particle number does not change in the
reaction, the mean molecular weight of the reacting mixture

remains constant.

If we rewrite the continuity equation for tritons in

terms of o , using equation (3.16), it becomes

a

= (1-0)%vy  (em” see™). (3.19)

T Ty

A d« (3)2 P
m
The thermonuclear power per unit volume term,P&V, in the
differential form of the energy equation, (equation (2.17)),
. d ’ dq, ;

—— = N
is 4% (F u qTN) A s . PTN’ can also be written as
the product of the reaction rate, W, and the energy released

per reaction, QR' Equating these two expressions for PTN

we see that

d«
= (3.20)

= ®
m, "R

If both sides are integrated with respect to x, subject to

the condition that Ay = 0 for K= 0, equation (3.20)

becomes
qTNzor(’ (3.21)
Q
where Q= 2 R .
> My

A A NN U L AR R S
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%
mp + mp

released per unit mass of initial mixture if it reacts com-

It is easily verified that Q= , the maximum energy

pletely.

3.4 Dimensionless Form of Shock Structure Equations for
Deuterium-Tritium Mixtures

The shock structure equations can be put into dimen-
sionless form, if they are multiplied by an appropriate
combination of the mass, momentum, and energy flow constants,

A, B and C. The dimensionless temperature is defined by

XKTH

my

T

1

’ (3.22)

where H (3.23)

"
o l>
(N3 I N)

and m, is the average ion mass for the inital mixture. For
the deuterium-tritium mixture, with egual numbers of deuterium

and tritium ions, m, ==(mD + mT)/Z. Therefore,

rt=kTH - RTH. (3.24)

(my + mp)/2 2.5
The dimensionless speed, density and pressure are defined in

the following way:

L

te = u( H), (3.25)
B

e (3.26)
¥=3

. o,
2EE
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and A\l

H]

@ o

. (3.27)

In summary, the complete system of shock structure

equations in dimensionless form is

&w =1, (3.28)
THws=1, (3.29)
5 W 0 w2
5 q;' + =1 {HQ + A = CH, (3.30)
M=2¢T , (3.31)
d 3 AH (1-«)? Prn
d« _ 3 AH A (rvy - I (3.32)
dx 5 m w AQ

) 3
where o =8 [p = ax' (3.33)
A J'BR ’ L )
a

and P = 2.261 x 10~/ “—-5—-*1(345) LA+ (3.34)

BR 2 ~
mT R

The function 4, can be rewritten in a way that makes its
physical significance apparent by changing variables of

integration from x to  and by making use of equation (3.32).

It then becomes

(3.35)

There are two limiting cases of the shock structure equa~

tions, one including reactions and no radiation, the other

including radiation but no reactions. The non-radiative limiting

seetiCoon
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case, (A = 0 for all x), was discussed previously. The non-
reactive limiting case is obtained if we set %f = 0 for all

x and J(0)=0. The radiation is assumed to occur downstream
from the gas dynamic shock, so the physical validity of this

case is questionable. However the pure radiative solution

of the equations is useful in providing a bounding curve

for the solution of the physically more valid case that

includes both reactions and radiation.

3.5 Dimensionless Parameters in the Ener ation

There are three dimensionless parameters in the energy
equation, CH, HQ, and A.

The parameter, CH, combines the constants of integration
of the mass, momentum and energy equations. It depends only
on the initial Mach number of the gas, Ml’ and not on the

reaction chemistry, i.e.,

/
- 1
=%' A —g ) . (3.36)
1

The initial Mach numbers, M for thermonuclear shocks are

lJ
>>1, so CH = 1/2. The value of CH is therefore independent

of the initial conditions.

sy
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The parameter, HQ, combines the mass and momentum flow
constants with the energy per unit mass released in the

reactions, i.e.,

o 2
HQ = 9-2- L ; - (3.37)
ul 1l + —_5
Kul

!
1l Bk didie Hi

PR,

For very large initial Mach numbers, HQ reduces to Q/ui;

since u, and Q are related by the Chapman-Jouguet condition,

1
.
| & then
i
(2 1
g 0y = '.—-—'-2— = —2 - (3.38)
| & 2(¥°-1) 32

i HQ is therefore independent of the reaction under considera-

tion for shocks propagating with the C-J speed.
The third dimensionless parameter, A, is a measure of

the relative importance of power lost in bremsstrahlung
and power gained in thermonuclear reactions. When A is
much smaller than other terms in the energy equaticn, (A <¢<1l),
radiative losses are insignificant. When the value of A
approaches 1, radiative power losses become comparable to
the power gained in reactions. Unlike the parameters CH and
HQ, & is neither constant nor independent of the reaction

chemistry.

3.6 Fusion Reacticons in Tritium

T™o fusion reactions can occur in a pure tritium gas.

T P e 2 S P '
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4
l, T +T-—2n + He ;

and 2. T + T-~—>He5+ n; Hesn-a He4 + n.

G n*mw*%%imfmﬁ'ﬂffmﬂ%

‘ : 11.33 Mev is released in each reaction. If an incident

triton strips a proton offa target triton, reaction 1l

A R T B s

occurs, and He4 and two neutrons are formed directly. The

-y
o g

e neutron energy spectrum is continuous since there are three

deuteron off a target triton, the reaction occurs in two

stages (reaction 2 ). The neutron energy spectrum is dis-

rete because only two bodies come off in each stage of

¢!

g . : 3
the reaction (Ajzenberg-Selove and lAauritsen 9).

T-T cross sections have been measured for incident lab
energies between 60 kev and 1.14 Mev (Govorov et al4°). The

€ 1
cross section as a function of energy may be represented by

the fun<tion

" — =

» b

- & (& % bUnE (o)) %10 2" en° (3.39)

where a

-91.2 + 2.5,

(55.8 + 1)/anlo -
T increases monotonically from 10 mb at 60 kev to 82 mb
ﬁ at 1.14 Mev (see figure 1ll).
Below these energies we can assume a Cross section of
the Gamov type. There is scme question about the applica-
bility of Gamov cross section to stripping reactions. How-

ever it is the only available cross sections for these energies

ol

o e v I o 5 ey R, -
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z 630 barns keV
a'= 54 (kev)!/2
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[covorov ET AL 43]
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and has been used by Thompson44. The theoretical value of

the constant B' is 54 (kev)l/z. The value of A' which gives

Govorov's measured value of «— at 60 kev is ¥

A' = 0.6 exp(léi)%_ barns kev . (3.40)
60

The T-T cross sections for EL { 60 kev are shown in figure 10.

3.7 Reaction Probabilities for T( t,2n) He4 Reactions
kT = 1 Mev

An expression for the reaction probability for T-T
reactions can be obtained analytically for the temperatures
that occur in thermonuclear shocks (KT = 1 Mev). In order
to compute <1Vv), an assumption must be made about the behavior
of the cross section at energies for which no experimental
values are available (EL<,60 kev and EL>'1.14 Mev). For
kT = 1 Mev, collisions between particles with lab energies
less than 60 kev do nct contribute significantly to {vv>.
Therefore, any coavenient assumption about the behavior of
the cross section at these energies, can be made. The
Govorov cross section has Leen extrapolated to its crossing
point on the energy axis, Eo = exp (-~ % ). It is assumed
to be zero for energies below Eo' Collisions between parti-
cles with energies above 1.14 Mev make important contributions

to {1v). The Govorov cross section has been extrapolated

* An alternative way to match the Gamov and Govorov cross

sections at 60 kev would be to choose values of A' and B'

such that the cross section and its firest derivative were
continuous at 60 kev.
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to all energies above 1.14 Mev for convenience in computing
(4¥) . The contribution of the cross sections for energies
much higher than kT is damped ~ut by the exponential in
the integral.

{gV) can be evaluated with the center of mass energy,

E__, as the variable of integration. Since M = TI'._ for
cn 2

pure tritium, the relation between lab and center of mass

energy 1is just Ecm = -5_ .

Therefore, it follows from equations(2.35) and (3.39), that

| =27
: 87T = 10 1
i <(T'V> = Ny 3/2 X
| (27 kT)
(a+b tn(2E_)) exp (- f‘gm) E dE . (3.41)
L cm kT cm cm

The inteyral can be evaluated most simply by changing

variables, from Em to the dimensionless variable, & , where

b3

_cm
€ = o (3.42)

Then

where a'= a + b 4n(2kT)
When the integral is performed, the resulting expression

for (1v) is

I e aasdiamtnnd s et s e mc cerHesd e
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4 x 10'-27 i Eo Eo
lovy = ==222— (k1) p|E (=) +ep (-=2| |, (3.44)
(‘n"m )" T 2kT
T

where E (x) = Jﬂﬁfg_i:Xl dy .
b4
X

Written in terms of our dimensionless variables, {(TV) becomes

L E H/ E H/
<W)=(L§-3)‘bﬁal(—‘;—,€&)+exp (- .5;?&) . (3.45)

TH
5 1 EoH
Since H« = = ——7—m is a dimensionless
2 2

parameter that depends on the Q of the reaction and the cut-

off energy for the Govorov cross section, Eo.

kT < 100 kev

If kT =< 100 kev, the contribution of collisions of
particles with lab energies below 60 kev becomes important.
The Gamov cross section must be used for energies below 60
kev. There are now two contributions to {tV). The Gamov
cross section is integrated from some energy (which is much
less than kT) to EL = 60 kev. The Govorov cross section is
integrated from EL = 60 kev to EL =00, The Gamov cross
section was evaluated at 37 values of lab energy between

0.1 and 60 kev, and integrated over these energies with a

Simpson's rule for unevenly spaced pivotal points. The




e 7 r
e A 3 T E
RSSO R LR S L SR, S

1Y

62

integral over the Govorov cross section was performed

analytically with the result

=27 4 E E
LV gov= 8210 (xr)* [ﬂ‘o (1+ =22 ) exp (- =)

(ﬂm,l.)Jé kT KT
E E
+ (b (B G22) +exp (- 520 ))] (3.46)

where ¢ _ =a +b Ans0 and E__ = 30 kev.
o oo
i ; TV
The results of the calculations for (V) and ( >Gov
are shown in Table 3. For kT = 1 kev, the Gamov contri-
bution dominates; for kT = 10 kev, the Govorov contribution
is roughly twice the Gamov contribution:; for 100 kev, the

Govorov contribution dominates.

3
kT (kev) (sv)Gam (V) Gov (avy :2c)
1 3.56 x 10~2° 1.04 x 1079 3.56 x 10°2
5 6.64 x 10 2° 1.88 x 1020 8.52 x 10°2°
10 2.11 x 10722 | 3.90 x 107° | 6.10 x 107°
20 2.44 x 107°° 2.23 x 10718 2.47 x 10718
50 1.29 x 10712 8.97 x 1018 9.10 x 10718
100 5.84 x 10720 | 1.93 x 1077 1.93 x 1077
200 2.34 x 10°%° | 3.68 x 1077 3.68 x 1071/
500 6.38 x 10721 7.83 x 1077 7.83 x 1077
900 2.70 x 10”2 1.22 x 1078 | 1.22 x 10716

TABLE 3. Contributions of Gamov and Govorov Reaction
Probabilities to (<v)

et G —————
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An approximate formula for {s\J) for kT £ 10 kev, is

(Thompson44)
oo, SIS ()
app /af- xp 4w cn/sec, (3.47)

where, for T-T reactions,

/A4A = the reduced mass<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>